The von Mises Graphical Model: Regularized Structure and Parameter Learning (CMU-CS-11-129/CMU-CB-11-101)
نویسندگان
چکیده
The von Mises distribution is a continuous probability distribution on the circle used in directional statistics. In this paper, we introduce the undirected von Mises Graphical model and present an algorithm for parameter and structure learning using L1 regularization. We show that the learning algorithm is both consistent and statistically efficient. Additionally, we introduce a simple inference algorithm based on Gibbs sampling. We compare the von Mises Graphical Model (VGM) with a Gaussian Graphical Model (GGM) on both synthetic data and on data from protein structures, and demonstrate that the VGM achieves higher accuracy than the GGM. This research was supported by NSF IIS-0905193. Corresponding Author: [email protected]
منابع مشابه
The von Mises Graphical Model: Structure Learning (CMU-CS-11-108 / CMU-CB-11-100)
The von Mises distribution is a continuous probability distribution on the circle used in directional statistics. In this paper, we introduce the undirected von Mises Graphical model and present an algorithm for structure learning using L1 regularization. We show that the learning algorithm is both consistent and efficient. We also introduce a simple inference algorithm based on Gibbs sampling....
متن کاملThe von Mises Graphical Model: Expectation Propagation for Inference (CMU-CS-11-130/CMU-CB-11-102)
The von Mises model encodes a multivariate circular distribution as an undirected probabilistic graphical model. Presently, the only algorithm for performing inference in the model is Gibbs sampling, which becomes inefficient for large graphs. To address this issue, we introduce an Expectation Propagation based algorithm for performing inference in the von Mises graphical model. Our approach in...
متن کاملThe von Mises Graphical Model: Regularized Structure and Parameter Learning
The von Mises distribution is a continuous probability distribution on the circle used in directional statistics. In this paper, we introduce the undirected von Mises Graphical model and present an algorithm for parameter and structure learning using L1 regularization. We show that the learning algorithm is both consistent and statistically efficient. Additionally, we introduce a simple inferen...
متن کاملParameter Estimation of Some Archimedean Copulas Based on Minimum Cramér-von-Mises Distance
The purpose of this paper is to introduce a new estimation method for estimating the Archimedean copula dependence parameter in the non-parametric setting. The estimation of the dependence parameter has been selected as the value that minimizes the Cramér-von-Mises distance which measures the distance between Empirical Bernstein Kendall distribution function and true Kendall distribution functi...
متن کاملThe von Mises Graphical Model: Structure Learning
The von Mises distribution is a continuous probability distribution on the circle used in directional statistics. In this paper, we introduce the undirected von Mises Graphical model and present an algorithm for structure learning using L1 regularization. We show that the learning algorithm is both consistent and efficient. We also introduce a simple inference algorithm based on Gibbs sampling....
متن کامل